Synergistic Approach toward Developing Highly Compatible Garnet‐Liquid Electrolyte Interphase in Hybrid Solid‐State Lithium‐Metal Batteries (Adv. Energy Mater. 8/2023)
نویسندگان
چکیده
Garnet Type Solid Electrolytes In article number 2203897, Venkataraman Thangadurai and co-workers report the use of an AlCl3 Lewis acid fluoroethylene carbonate dual additive based non-aqueous liquid electrolyte stabilizing garnet solid-liquid interphase, towards improved durability high critical current density for hybrid solid-state lithium metal batteries.
منابع مشابه
Electrolyte and Solid-Electrolyte Interphase Layer in Lithium-Ion Batteries
The supply and the management of the energy are particularly at the centre of our daily concerns and represent a socio-economic priority. Indeed, while cars use fossil fuel as the main source of energy for over a century, the depletion of the oil reserves and the necessity to reduce the carbon dioxide emissions, stimulate the development of electric vehicles. Therefore, one of the main challeng...
متن کاملToward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface
Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet-type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10-3 to 10-4 S/cm) and good stability against Li me...
متن کاملSolid electrolyte interphase in semi-solid flow batteries: a wolf in sheep's clothing.
The formation of the alkyl carbonate-derived solid electrolyte interphase (SEI) enables the use of active materials operating at very cathodic potentials in Li-ion batteries. However, the SEI in semi-solid flow batteries results in a hindered electron transfer between a fluid electrode and the current collector restricting the operating potentials to ca. 0.8 V vs. Li/Li(+) for EC-based electrol...
متن کاملInterface-Induced Renormalization of Electrolyte Energy Levels in Magnesium Batteries.
A promising strategy for increasing the energy density of Li-ion batteries is to substitute a multivalent (MV) metal for the commonly used lithiated carbon anode. Magnesium is a prime candidate for such a MV battery due to its high volumetric capacity, abundance, and limited tendency to form dendrites. One challenge that is slowing the implementation of Mg-based batteries, however, is the devel...
متن کاملArtificial solid electrolyte interphase for aqueous lithium energy storage systems
Aqueous lithium energy storage systems address environmental sustainability and safety issues. However, significant capacity fading after repeated cycles of charge-discharge and during float charge limit their practical application compared to their nonaqueous counterparts. We introduce an artificial solid electrolyte interphase (SEI) to the aqueous systems and report the use of graphene films ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Energy Materials
سال: 2023
ISSN: ['1614-6832', '1614-6840']
DOI: https://doi.org/10.1002/aenm.202370033